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The problem of the uniform heating of a two-layer plate is solved. The transversely isotropic elastic layer (soft plate) investigated 
is in ideal contact with an absolutely rigid layer, deformable only by thermal expansion. The generalized plane temperature problem 
reduces to determining the stress-strain state of the soft anisotropic layer investigated using the equations of the mixed problem 
of elasticity theory. At the ends of the boundary layer of the soft plate (a thin contact layer), no conditions are imposed. On the 
remaining part of the ends of the soft plate, the boundary conditions correspond to a free boundary. The problem has a bounded 
smooth solution. Unlike the approach described earlier [1], it is proposed to seek an accurate solution in the form of ordinary 
Fourier series with respect to a single longitudinal coordinate. Solutions in polynomials are also used. It is shown that the existence 
of these solutions in polynomials enables the convergence of the Fourier series to be improved considerably. © 2002 Elsevier 
Science Ltd. All rights reserved. 

Earlier [1], a modification of Mathieu's method was proposed to solve the symmetrical temperature 
problem for a transversely isotropic elastic layer. 

1. T H E  M E T H O D  O F  S O L U T I O N  

The problem of the uniform heating of a two-layer plate is solved. The transversely isotropic elastic 
layer (soft plate) investigated is in ideal contact with an absolutely rigid layer, deformable only by thermal 
expansion. It is assumed that the layer of anisotropic material under investigation has practically no 
effect on the other layer by virtue of its relatively low stiffness. 

The generalized plane temperature problem reduces to determining the stress-strain state of a 
transversely isotropic soft plate of length 2L and thickness H 

Ix'l~< L, O<.y'<~H 

on the basis of the equations of the mixed problem of elasticity theory. 
Generally speaking, the soft plate is bounded along the aix, t), perpendicular to the axes directed 

along the length and thickness of the plate. 
For the strain along this axis we have 

e~=XoT (1.1) 

where ~.0 is the coefficient of thermal expansion of the isotropic absolutely rigid layer, and T = const 
is the temperature increment. 

Below, we will use dimensionless Cartesian coordinates x, y referred to L. Theny = 0 is the side surface 
of the layer investigated, x = --- 1 are its ends, and y = h is the contact surface with the absolutely rigid 
layer (h = H/L). 

We will write the relation between the stresses ax, ay and axy and the strains 4, ey and exy/2 of the 
transversely isotropic material investigated for the case of generalized plane strain taking (1.1) into 
account 
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Eex = ¢~x - VoOy + E(I + v)A~,T + ELoT 

Eey = ¢o¢~y - Vo¢~ x + E[~.y + vo(l - v)ALIT, 

E - Ex k - (kv') 2 kv' 
- l _ v 2 ,  to= l_v2 ' V ° = l - v '  

L Ex 
~to = 1 2 ' 7 = -'~-, ,aZ, = ~,, - ~.o 

EExy = ~OGxy 

(1.2) 

Here it is assumed that the axis of isotropy (symmetry) of the material is directed along the y axis, 
Ex and Ey are the elastic moduli along the x and y axes, G is the shear modulus for the (x, y) plane, v 
and v' are Poisson's ratios, and ~.x and ~.y are the coefficients of thermal expansion along the x and y 
axes respectively. Poisson's ratio v characterizes the transverse compression in the plane of anisotropy 
(x, v) for extension in this plane, and v' is the same, but for extension in the direction of the y axis [2]. 

The stress % is determined from Eq. (1.1) 

c o = vo  x + kv'oy - ExA~.T 

Taking relations (1.1) and (1.2) into account, we will write the equations of the anisotropic theory 
of  elasticity in the form 

~4 F ~4 F ~4 F 
m ~-~- + IX ~x--~7 + 3-~- = 0 (1.3) 

~2 F ~2F ~2 F 
~x = ~ y 2 ,  ~y =~x  2 '  ~xy = ~x~y' Ix = Y ° - 2 v °  

The boundary conditions on the side surface y = 0 and on the contact surface y = h have the form 

y = 0 :  (~y "=(~xy =0 (1.4) 

y=h:  Ex =~'0 T, OW/Ox=O 

where W is the dimensionless displacement (referred to L)  along the y axis. 
The last relation in Eqs (1.5) reduces to the equation 

y=h:  i OOX dx o =(ix+Vo)Ox  

(1.5) 

On the ends of the layer investigated there are no loads 

x =  +1: Crx = oxy = 0 (1.6) 

The solution of problem (1.1)-(1.6) presumably has a singularity (infinite) at the corner points 
(x -- _ 1, y = h) of the anisotropic layer investigated. We will find the bounded smooth stress-strain 
state of this layer, which is identical everywhere with the solution of system (1.1)-(1.6), with the exception 
of a certain small region at the corner points (x = _ 1, y = h). 

The problem can be formulated as follows. 
We will conventionally divide the layer investigated into strips Sn: {Yn >~ Y >~ Yn-1}, n = 1, 2 . . . . .  N, 

where Y0 = 0, YN = h, and N is the total number of strips. 
The plate SN is a thin contact layer ofapriori specified small thickness oN ~ h. In this layer it is required 

to find an accurate solution of Eq. (1.3) that corresponds to the internal mixed temperature problem, 
i.e. this solution should satisfy only the boundary conditions on the side surfaces y = h - oN and 
y = h. This layer will be called the boundary layer [1]. 

In the other layers it is required to find an accurate solution of the temperature problem that makes 
it possible to satisfy the corresponding boundary conditions on the side surfaces y = Yn-1, Y = yn 
(n = 1, 2 . . . . .  N - 1) and the integral boundary conditions on the ends x = _ 1, which correspond to 
the free boundary. Generally speaking, these layers can have different thicknesses 8n = Yn --Yn-l. 
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The exact solution of the problem has the form 

(~(;) , . (n) .~ 2t-2 = iv16 tox qn - / . t ~ ) +  N~n)(x 4 -1-0~4n)4 - M~"}(x a -1  -~l.~2n) - 
M(n)t,d:2 + M(.)  + r~¢.)... 2e 3 (n) 

(r,.,_ ~.,,.,[~4 l~t]+ f '=)l 2,,2 

+ ..(n)t:2 n)( ~3 rlln)l=3 y.2 

O~, ) = - 4 " t " )  ~" 3 m  s ,,.g,, -4N(j'lx3~,, -2M(~")x{,, +/~(")x - 3D~")x,~ 2 + 

2 rR(n) C ~'r'' l: ,±Din) sh(aimg,)]× i 
m=l 1=1 

where 

(1.7) 

Z, ~ cos(~rrt~).£ rot-) sh (~ , . r .~ . )+R( . )ch(0 t , , .~ . )} [ /_ |+(2_f )x2]  = t"~2i-l,m 2t,ra , 
m=l t=l 

ai, , .=rcmx,,  { . = y - y . _ l ,  Yo=O, YN=h, 0 ~ { . ~ .  

2 × ~ = g - ( - 1 ) i ( t l 2 - 4 m )  ~/2, i=1,  2, × , > 0  

Here, o~ 0 o ~ ) ( x , y ) , w h i l e R ~ ( j =  1, 2, 3, 4), M~)(j  1 ,2 ,3)  and ''("~'" 2, 3), and O(('), D~') = = l~2j  ~,J = 

and D~ n) are constants to be determined during the solution. 
For a transversely isotropic material with pronounced a~isotropy we can assume that 

bt > 2xto. 
For the boundary layer we assume that 

M~ N) = N~ N, = 0 (1.g) 

The conditions of conjugation of the layers will be written in the form 

Y =  y._,: ~(~ I -a("-I)- ~ , Oy-(")-- Oy(n-~} (1.9) 

aci"'dx i --" ,ix (1.10) Y = Y.-I: e;(,,) _ _ I n - I )  i ~ t'M Oo'(n-I)  
~Y - u xY ' Oy 

o ~Y = o 
n = 2 , 3  . . . . .  N 

The first equation in (1.9) follows from the continuity of the strain e. along the y axis. The second 
equation in (1.I0) indicates that the quantity 3W/Ox is continuous along the y axis. 

Boundary condition (1.5) on the contact surface of the soft anisotropic layer with ~he rigid plate takes 
the form 

i 3(y(N ) y = h: ex^tN)=k0T, - -*  dx = (g+Vo)O~ ~ (1.11) 
0 3y 

We will rewrite condition (1.4) on the free surface 

y=O: -o~__o )  =0 (1.12) Oy --'Oxy 

We will write the integral boundary conditions on the endsx = +-_1 taking into account the symmetry 
of the stresses with respect to the x coordinate 

IOxr (1, y)dy=O (1.13) 
n = l , 2  . . . . .  N - I  



1028 I.V. Panferov 

In (1.13), the upper and lower limits of integration are respectivelyyn and Yn-l. 
From relations (1.7) it follows that the third condition of (1.13) is automatically satisfied. 
The constants written above in formulae (1.7) are determined from Eqs (1.8)-(1.13). 
The existence of particular solutions in polynomials of Eq. (1.3) enables us to improve the convergence 

of the Fourier series in (1.7). 
We will briefly indicate the method used to set up an infinite system of algebraic equations for 

determining the required constants. 
The following expansions of the functions in Fourier series are used 

2x 2 _ x4 = 7__ + 48 ,E ( - i ) "  c o s ( n m x )  
15 m=l (gin) 4 

x 3 - x  = 12 ~ (-I)'" sin(r~mx) 
ra=l (/~m) 3 

(1.14) 

Functional equations (1.9), the first equation of (1.11) and the first equation of (1.12) are expanded 
in terms of the basis functionsx 2, 1 and cos (ronx). This means that, in these equations, the polynomial 
2x 2 - x  4 according to the first formula of (1.14) is expanded in a Fourier series. Then, the algebraic 
expressions with factors cos (wnx) and x 2 and also the sum of all the constants (factor unity) of the 
given functional equation are equated to zero. 

The functional equations (1.10), the second equation of (1.11) and the second equation of (1.12) 
are expanded in terms of the basis functions x and sin (rtrnx). Here, expansion of the function x 3 - x 
in a Fourier series is used. 

The system of algebraic equations obtained for determining the required constants in solution (1.7) 
is completed by Eqs (1.8) and the first two equations of (1.13). 

2. RESULTS OF C A L C U L A T I O N S  

Calculations of the dimensionless stresses (referred to the quantity EA~.T), given in this section, are 
carried out with 

k= 3, y=6, v=O,2, v'=O,l,h=O,2, N=6,  SN=O,2h 

8 , = 8 ( i = 2 ,  3, 4, 5), 81=0,58, 8=(h-O,2h) / (N-1,5) ,  L = 8 0  

where L is the number at which the Fourier series is terminated along the x coordinate. The 
thickness of the first layer 81 is taken to be less than the thicknesses of the other layers in order to 
improve the approximation of the boundary condition ax(1, y) = 0 close to the free side surface 
y = 0 .  

The figure shows the distribution of the dimensionless stresses Px (the continuous curve), py (the 
dot-dash curve) and Pxr (the dashed curve) along the x axis in different sections of the anisotropic layer 
investigated. Curves 1, 2, 3 and 4 correspond to the sections 

y=0 ,  y=4h19, y=h~, y = h ( h l = h - S N = O , 8 h  ) 

Comparison of the results of a calculation of the stresses with indices (n) and (n - 1) at the interfaces 
of these solutionsy = Yn-i (n = 2, 3, 4, 5, 6) indicates a high degree of convergence of the Fourier series 
in solution (1.7). In particular, the values of the stresses~o~ n) andpy (n-l) at the interfacesy = Y~-1, n = 4, 
6(y3 = 4tl/9, Y5 = hi) are given below: 

x 0 0.5 0.8 0.9 1 

104 . (6) 165 429 467 -700 -7760 × Py 

104 . (5) 166 430 468 -700 -7780 × Py 
I 0 4 X p~4) 55 154 34 ---697 460 

104 × p~3) 55 154 34 --697 456 
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Fig. 1 

The calculations also show that, when N >/4, the solutions are practically identical. 
Earlier [1], the generalized plane problem of the uniform heating of a symmetrical three-layer plate 

with absolutely rigid outer layers deformable only by thermal expansion was solved. Similarly, a boundary 
layer of the investigated soft filler of transversely isotropic material was introduced. To find a symmetrical 
accurate solution of the problem, a modification of Mathieu's method was used; the solution was 
constructed as the superposition of ordinary Fourier series along the two coordinates x, y and partial 
solutions in polynomials of Eq. (1.3). This problem was also solved by the method described in this 
paper (N = 5, 8, = 8, i = 1, 2, 3, 4). Comparison of the solutions with 

k=3,  y = 6 ,  v=0,2,  v '=0,1,  h=0,2,  8 N = h / 6  

where 2h is the thickness of the anisotropic filler, and 8 N is the thickness of the boundary layer, showed 
that they are practically identical everywhere, including at the corner points (___ 1, h). 

Note that the nature of the change along x in the magnitudes of the stresses obtained for the 
symmetrical and the asymmetrical temperature problems is approximately the same. The exception is 
the change in the stresses ~; in a small neighbourhood of the point x = 1, y = 0. For example, continuous 
curve 1 in Fig. 1 has a zone of small tensile stresses close to the end x = 1. 
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